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Abstract

In this paper, We apply the generalized quasilinearization technique to obtain a monotone
sequence of approximate solutions converging monotonically and quadratically 10 the unique
solution of a second order three-point boundary value problem with general nonfinear noncon-
vex boundary conditions.
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1 Introduction

The method of quasilinearization initiated by Bellman and Kalaba {1}, and generalized by Laksh-
mikantham [2-3] has been studied and extended in several diverse disciplines. In fact, itis generating
arich history and a comprehensive description of this method can be found in [4-10].

Multi-point nonlinear boundary value problems, which refer to a different family of boundary con-
ditions in the stady of disconjugacy theory [11], have been addressed by many authors, for example,
[12-14]. In particular, Eloe and Gao [15} discussed the quasilinearization method for a three-point
boundary value problem.

The aim of this paper is to relax the assumption of convexity/concavity on the nonlinear general
boundary conditions involved in the second order three-point boundary value problem and discuss
the extended method of quasilinearization for this problem. In fact, we develop a sequence of ap-
proximate solutions converging monotonically and guadratically to a solution of the problem.
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2 Preliminary Results

We consider the three-point boundary value problem with general nonlinear boundary conditions

(1) = F(1,x(0)), (1)

pO) -0 =a,  px{l)+gd(1)=gx(3)). o

where f € C{[0,1] x R,R], p,g > O with p > 1 and g: R — R is continuous. By Green’s function
method, the solution, x(¢} of (1)-(2) can be written as -

_ —f p+yq 1 t q !
(1) = g+ ) G g+ g [ 6 st

where the Green’s function G{r, s} for the general three-point boundary value problem is given by

G )—_1_{ (pr+a)(pls—1)—q), f0<r<s<1
TP L (1)~ g)(ps+q), HO<s<r<l

Notice that G(r,s) < Oon (0,1) x (0,1).
We say that o € C2[0,1] is a lower solution of the boundary value probiem (1)-(2) if

o’(1) = f1,0), 1 €(0,1],

' i
pa(0) —qo'(0) < a, po1) +g0r(1) < gla(z)),
and B € C?10,1] be an upper solution of the boundary vaiue problem (1)-(2) if
B (1) < f(1,8), 1 € [0, 1],

PO -z pB1)+gB (1) > B2

Now, we state the following theorems which play a pivotal role in the proof of the main result (for
the proof of these theorems, see [16]).

Theorem 1. Assume that f is continuous with f; > Gon {0, 1] x R and g is continuous with 0 < g’ < |
on R. Let 8 and o be the upper and lower solutions of (1)-(2) respectively. Then a(t) < B{r) ,
te 0,1 '

Theorem 2. Assume that f is continuous on [0, 1] x R and g is continuous on R satisfying 0 < g’ < 1.
Further, we assume that there exist an upper solution P and a lower solution o of (1)-(2) such that
aft) < B(r), 1 € [0,1]. Then there exists a solution x(r) of (1)-(2) satisfying a{t) < x{1) <B(r), r ¢
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3 Main Result

Theorem 3. Assume that

(Ay) flt,x) € C({0,1] x R) such that g{(r,x) >0, %{f(t,x)-—i— O(r,x}) <0, where aa—;q)(t,x) <0
for some continuous function ¢(z,x).

(A2) o,B € C*0, 1] are lower and upper solutions of (1.1)-(1.2) respectively.

(Az) g{x},g'(x) are continuous on R with 0 < g’ < 1 and g"(x) -+ ¢ (x) > 0 for some continuous
function y{x} satisfying " (x) > 0.

Then there exists a monotone sequence of solutions {w,} converging quadratically to the unique
solution, x of (1)-(2).

Proof. Define F : [0,1] x R — Rby

Flr,x) = f(t,2) +6{t,x).
Using {A;) and (A3), we obtain

f{t,x)gF{r,y}%Fx(I,y)(x"-y}~(§)(i,x), (3)
and _
, 8(x) = x(y) + %' () (x — v} — wlx), (4)
where y{x) = glx} +w(x)and o <y <x < B.
Define
F(t,x,y) = F(1L,y) + F(t,9)(x — y) ~ (1, x),
and

hx,y) =% () + % () (x —y) — wix).
We observe that
flt,x) = rriénF*(f,x,y), Jltx) = F*{t,x,x) {5
gl =maxh(xy), gl = hix,x) ©

In view of the fact that fi(r,x) > 0, we find that F} (r,x,y) > O which implies that F}{r,x,y) is
increasing in x for each {f,y) € {0,1] x R. Similarly, g'(x) = h,(x,y) and by {A3), we have 0 <
he(x,y) < 1. Select &= wy and consider the following BVP
K1) = F*{1,x(t), wo(t)), 1 € [0,1], 7)
1 1

px(0) = gx'(0) = a, px(1)-+qx'(1) = hix(5),wo(3)). (8)

Using {A3), (5) and (6), we obtam
wy = flt,wo) = F™(t, wg,wo), t €1[0,1],

pwol0) — qwh(0) < a, pwoll} +gwp(1) < g(We(%)) = h(Wa(%)a We('zl‘))}

and

B < fle.B) S F(1.B,wo), 1 €[0,1],




16 Abmed Alsaedi and Mohammed Alhuthali

pP(0) ~4B'(0) = a, PRI} +qB'(1) = g(ﬁ(%)) 2 h(ﬁ(%)m(%)),

which imply that wy and § are lower and upper solutions of (7)-(8) respectively. It follows by
Theorems 1 and 2 that there exists a unique solution, wy of {7)-(8) such that

wolt) < (1) < Ble), 1 (0,11
Now, we consider the BVP
X = F{tx{e), 1), 1 € 10,1, g
prO)-ad(O)=a,  pr1)+ad(1) = hx( ) mi(2)) (10)

Apain, using (A3), (5) and (6), we get

W;,:F*(I;WT-;WO) EF*(I,W],W]), te [0’”

pwi(0) — qw)(0) < a, pwi{1Y+gw) (1) = h{w, (%),w(}(%)} < h{w;(%),wl(é_}},

and
B < f(6.BY S F*(1,B,w1), r € [0,1],

PBO-aB©0) 2 pB)+aB(1) 2 g(B(3)) 2 W), wi(L))

implying that wy and § are lower and upper solutions of {9) — (10) respectively. By the earlier
arguments, there exists a solution, wy of (9) — (10} such that

wi{t) Swalr) <B{r), 1€ [0,1].
Continuing this process successively, we obtain a monotone sequence {wy} of solutions satisfying
wo(t) Swi () Swa(t) <. Swa(1) < BQ), 1€ (0,1,
where each element w, of the sequence is a solution of the BVP
R = F (1, x(0), w1 (1)), 1 € (0,1,

PrO)-grO)=a,  pr(1)+ gl (1) = hx( L), i (L))

and is given by

1 ptq
p+2q p’+2pg

mit) = af )+ hn() e () L)

2 p+2q  p?+2pq
1
+ /G(I,S}F*(s,wn(s),wn_;(s))ds.
G .

(11)

Employing the fact that [0, 1] is compact and the monotone convergence is pointwise, it follows that
the convergence of the sequence is uniform. If x(z) is the limit point of the sequence, then passing
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onto the limit n — o0, {11} gives

- 4 —F pPgq q
) = at e N ]

+ fos *(s,x(s},x(5))ds

-t ptq 1 4 q
= af + +g(x(5 +
p+2g PQ%“EPQ) 8l ))[p+2q pzﬂpq]

- /0 61,5 £ (5,5(5))ds.

Hence, x(r) is the solution of (1)-(2).
Now, we show that the convergence of the sequence of iterates is of order k(k > 2). For that, we
define ¢, (1} = x(t) —w,(¢), t € [0,1] and note that ¢,(¢) > 0. Further

Pen(0) = 96,(0) =0, pen(1)+ e, (1) = glx(3)) ~ tw(3), w1 (3)).

Using the generalized mean value theorem, we have

eart(t) = ' —wy,
= F(r:x)""q’([ux)‘iF(I:WH)+ﬂ(f:WH)(Wn+I —W,;)~¢(I,Wn+|”
= Flte){x—wq) = F(t,wa)(x—w,)
[t wa} — dx(F, 02)] (x — wasr)
Faeltyea)(er —wn) (x—w) + [Fe(t, wa) = 0x(1. c2))(x — a1
Falt,ca)el + fult,c2)ens
~Ml|eaif?,

+

f

AV

where M is a bound on Fi(f,x) for t € [0,1], w, < c3 < ¢y <x, wap1 < €3 < x and Jle,]| =
max{le,(r}] : 1 € [0, 1]}. Thus, we have

rirt) = [g(x(5)) = Hma (DM 4 =)+ [ Gl

< {x(x(én—x{w,x%)%<w(x(5>>~w(wn+l<§)>)

- x{<wn{%>><wn+1<—§->wwn(i)mp ;2 e [ 16(9)lds
= W{ex(z) - mal5) ~W(es)ag) — wrer (D)

- x’(wn(i))(wm—) ~wn<§>)1£p j =+ i+ Ml [ 60)1as
< Bed(3)+ & g enni (Gt + o+ Ml

where M) provides a bound for Mf(}l G(t,5)lds, wa{3) < ce < ca <x{$), wa(]) < o5 < x(1).
Taking maximum over the interval [0, 1], we get

len il < Msllen]* +Aallensal, (12)
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where M, provides a bound for [x"] on wa (33, x(30 1l <A < 1, Ms = M, +My, My = MMy, Ay =
AM3 and My = ;—J}% 4 pTlgz_pg' Solving (12) algebraically, we obtain

lewsl < TNl

This completes the proof.
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